97 research outputs found

    Morphologically and immunohistochemically undifferentiated gastric neoplasia in a patient with multiple metastatic malignant melanomas: a case report

    Get PDF
    Introduction: Malignant melanoma is a neoplasia which frequently involves the gastrointestinal tract (GIT). GIT metastases are difficult to diagnose because they often recur many years after treatment of the primary cutaneous lesion and also manifest clinically at an advanced stage of the neoplasia. Furthermore, GIT metastases can appear in various morphological forms, and therefore immunohistochemistry is often useful in distinguishing between a malignant melanoma and other malignancies. Case presentation: We report the case of a 60-year-old man with a multiple metastatic melanoma who underwent an upper endoscopy to clarify the possible involvement of the gastric wall with a mass localized in the upper abdomen involving the pancreas and various lymph nodes, which was previously described with computed tomography. Clinically, the patient reported a progressive loss of appetite, nausea and vomiting. The upper endoscopy and histological examination revealed a gastric location of an undifferentiated neoplasm with an absence of immunohistochemical characteristics referable to the skin malignant melanoma that was removed previously. Conclusion: The present case report shows the difficulty in diagnosing a metastatic melanoma in the GIT and therefore, it seems worthwhile to consider metastatic malignant melanoma in the differential diagnosis of undifferentiated neoplasia. © 2008 Alghisi et al; licensee BioMed Central Ltd

    Reduced Apaf-1 expression in human cutaneous melanomas

    Get PDF
    Malignant melanoma is a life-threatening skin cancer due to its highly metastatic character and resistance to radio- and chemotherapy. It is believed that the ability to evade apoptosis is the key mechanism for the rapid growth of cancer cells. However, the exact mechanism for failure in the apoptotic pathway in melanoma cells is unclear. p53, the most frequently mutated tumour suppressor gene in human cancers, is a key apoptosis inducer. However, p53 mutation is only found in 15–20% of melanoma biopsies. Recently, it was found that Apaf-1, a downstream target of p53, is inactivated in metastatic melanoma. Specifically, loss of heterozygosity (LOH) of the Apaf-1 gene was found in 40% of metastatic melanoma. To determine if loss of Apaf-1 expression is indeed involved in melanoma progression, we employed the tissue microarray technology and examined Apaf-1 expression in 70 human primary malignant melanoma biopsies by immunohistochemistry. Our data showed that Apaf-1 expression is significantly reduced in melanoma cells compared with normal nevi (χ2=6.02, P=0.014). Our results also revealed that loss of Apaf-1 was not associated with the tumour thickness, ulceration or subtype, patient's gender, age and 5-year survival. In addition, our in vitro apoptosis assay revealed that overexpression of Apaf-1 can sensitise melanoma cells to anticancer drug treatment. Taken together, our data indicate that Apaf-1 expression is significantly reduced in human melanoma and that Apaf-1 may serve as a therapeutic target in melanoma

    The role of spectrophotometry in the diagnosis of melanoma

    Get PDF
    Background. Spectrophotometry (SPT) could represent a promising technique for the diagnosis of cutaneous melanoma (CM) at earlier stages of the disease. Starting from our experience, we further assessed the role of SPT in CM early detection. Methods. During a health campaign for malignant melanoma at National Cancer Institute of Naples, we identified a subset of 54 lesions to be addressed to surgical excision and histological examination. Before surgery, all patients were investigated by clinical and epiluminescence microscopy (ELM) screenings; selected lesions underwent spectrophotometer analysis. For SPT, we used a video spectrophotometer imaging system (Spectroshade® MHT S.p.A., Verona, Italy). Results. Among the 54 patients harbouring cutaneous pigmented lesions, we performed comparison between results from the SPT screening and the histological diagnoses as well as evaluation of both sensitivity and specificity in detecting CM using either SPT or conventional approaches. For all pigmented lesions, agreement between histology and SPT classification was 57.4%. The sensitivity and specificity of SPT in detecting melanoma were 66.6% and 76.2%, respectively. Conclusions. Although SPT is still considered as a valuable diagnostic tool for CM, its low accuracy, sensitivity, and specificity represent the main hamper for the introduction of such a methodology in clinical practice. Dermoscopy remains the best diagnostic tool for the preoperative diagnosis of pigmented skin lesions

    Melanomas difficult to diagnose via dermoscopy

    No full text
    Due to the potentially lethal nature of melanoma, prompt diagnosis and timely excision are of paramount importance. The clinical ABCD mnemonic (asymmetry, boarder irregularity, color variegation and diameter greater than 6mm) is one of the first and most widely used methods introduced to teach early melanoma recognition. Unfortunately, some melanomas can evade the clinical ABCD rule and mimic benign melanocytic nevi or mimic benign and/or malignant variants of non-melanocytic lesions. Over the last two decades, knowledge and insight have been gained into the dermoscopic primary morphology of melanocytic and non-melanocytic lesions. This has allowed for the use of dermoscopy to substantially increase the diagnostic accuracy for melanoma over clinical naked-eye examination alone. Unfortunately, even with dermoscopy, some melanomas remain difficult to diagnose. However, these difficult to diagnose melanomas often reveal subtle dermoscopic clues that allow for their correct identification. In this review, we focus on five variants of melanoma that are challenging to identify and discuss the dermoscopic features that can assist in their diagnosis
    corecore